Marketing Healthy Soils for Healthy Plants

David M. Crohn Department of Environmental Sciences University of California, Riverside

Soil Nutrients: macronutrients

₩Total N -Organic N -Available N (nitrate and ammonia-N) **₩**Total P **₩**Total K

Soil Nutrients : micronutrients

#Boron *****Chlorine *****Cobalt *****Copper **₩Iron ***Manganese

₩Magnesium₩Molybdenum₩Sulfur₩Zinc

pH* Low pH = acid soil ₩High pH = alkaline soil * Neutral pH =

ECe = salinity

* ECe stands for Electrical Conductivity * Salts conduct electricity and this is used to measure them in soils * High ECe soils may have trouble germinating seeds and supporting growth * ECe is a water management indicator, more than a soil property

Bulk density

✗ Soil mass
Soil volume
✗ Dense soils

- Retard water movement
- Hold less water
- Impede air exchange
- Stop root development

	Wate	Water holding					
	capacity		Available Water Capacity by Soil Texture				
	1	•			Available Water (in/ft		
			Textural Class	soil)			
(AN	Field Capacity Available water for plant growth	Wilting Point No more water is available to plants	Coarse sand	0.25-0.75		
{	Saturation All pores are full of vater. Gravitational water is lost			Fine sand	0.75–1.00		
				Loamy sand	1.10–1.20		
Y				Sandy loam	1.25–1.40		
				Fine sandy			
				loam	1.50-2.00		
				Silt loam	2.00-2.50		
A				Silty clay loam	1.80-2.00		
W				Silty clay	1.50-1.70		
				Clay	1.20–1.50		

University of California AGRICULTURE AND NATURAL RESOURCES

How Composts Benefit Soils

Why compos

* To eliminate disease organisms

* Animal • Plant • Human

* To produce a stable and safe soil amendment

*** Nutrients • Odors • Phytotoxins**

Hargrove and Luxmore

Carbon

Source of energy for microbes Not all forms are equally available

- -sugars (more available)
- -fats, waxes, proteins
- -cellulose
- -lignin (less available)

Starches

*Used by plants and animals for intermediate energy storage.
*A carbohydrate (CH₂O)_x
*Readily metabolized by microbes
*Decomposed during composting

Cellulose

- Most abundant organic compound on Earth
 Examples: paper, cotton, cellophane, rayon
 Like starch, a carbohydrate composed of chains of glucose molecules (polysaccharides), but joined by β-linkages
 Cellulose is used by plants for construction of cell walls
- Tend to be structured in straight lines
 Can be metabolized by bacteria, fungi
 Ruminants, termites use bacteria to break down cellulose

Second most abundant organic compound on Earth
Has a complex structure
Along with cellulose is used by plants for construction of cell walls
Can be metabolized by fungi

Soil Nutrients: macronutrients

₩Total N -Organic N (slow release) -Available N (variable) **★**Total P (often rich) ★Total K (variable)

Bacteria

- 380 90% of the microbial community is bacteria
- ∗ Small: 0.5 3 µm diameter
- # High surface:volume ratio. Important for moving nutrients in and waste products out
- ★ C:N ratios on the order of 4.3:1 to 6:1
- Soil species differ from active compost species
 - $-0 40^{\circ}$ C: mesophyllic
 - 40-65 °C: thermophilic

Fungi

* Fungi include molds and yeasts
* Larger than bacteria
* Grow more slowly
* Able to metabolize lignin
* C₁₀H₁₇O₆N
* C:N ratios on the order of 9:1

Nitrogen

- * Vital nutrient for both microbes and plants
- Microbes are better than plants at accumulating
 N
- ✤ C:N ratio
 - Compost feedstock initially about 35:1
 - About 10:1 to 20:1 in cured product
 - About 8:1 in a soil

Soil Nutrients : micronutrients

*****Boron *****Chlorine *****Cobalt *****Copper **#**Iron *****Manganese

*****Magnesium *****Molybdenum **∗**Sulfur *****Zinc (Variable, depending on source)

ECe = salinity

ECe stands for Electrical Conductivity * Salts conduct electricity and this is used to measure them in soils * High ECe soils may have trouble germinating seeds and supporting growth * ECe is more of a water management indicator (Contains salts, some of which are nutrients. Improves tilth so salts can leach away)

Bulk density (decreases density)

🗯 Soil mass Soil volume * Dense soils - *Improves* water movement – Holds *more* water - Increases air exchange – *Promotes* root development

Bacteria and fungi

 Bacteria are much smaller than fungi
 Both decompose composts in the soil

Compost in soil

- Encourages the formation of soil aggregates
- * Aggregates are soil clusters held together as a result of compost defined
 - Fungal hyphae
 bind particles
 together
 - Bacterial
 polysaccharides
 serve as glue

Aggregated soils

*Hold water while allowing air to penetrate

*Facilitate drainage and salt removal

Allow roots to penetrate

★Are more stable, resisting

- Sheet
- –Rill

	Wate	Water holding					
	capacity		Available Water Capacity by Soil Texture				
	1	•			Available Water (in/ft		
			Textural Class	soil)			
(AN	Field Capacity Available water for plant growth	Wilting Point No more water is available to plants	Coarse sand	0.25-0.75		
{	Saturation All pores are full of vater. Gravitational water is lost			Fine sand	0.75–1.00		
				Loamy sand	1.10–1.20		
Y				Sandy loam	1.25–1.40		
				Fine sandy			
				loam	1.50-2.00		
				Silt loam	2.00-2.50		
A				Silty clay loam	1.80-2.00		
W				Silty clay	1.50-1.70		
				Clay	1.20–1.50		

Overcome worry... ...with knowledge and information

6

Photo credit: aur2899

